Final Report Presentation

April 16th, 2014

Central Ohio Elementary School Undisclosed Location, Ohio

Advisor: Dr. Robert Leicht

Conclusion

Raymond Scott Pell, Jr. Construction Management Option

-

55-221

Project Background

ļ	ntr	00	UC	tic	2h

100

1001-001

The Building

- Built: Original Building 1874
 - Multiple Renovations
- Occupancy: K-5 Grade School
- Location: Urban Neighborhood
- **Closed:** 2010 (due to fire damage)

Project Background

The Project

Size: 28,000 sqft (Renovation) + 18,000 sqft (Addition) Number of Stories: 3 Stories + Unoccupied Attic Construction Cost: \$9.07 Million Total Project Cost: \$11.2 Million Construction Start: August 13, 2014 Construction End: January 23, 2015 **Project Delivery Method:** Single Prime w/ CM Advisor

The Team Designer: Hardlines Design Company Project Manager: Smoot Elford Resources General Contractor: Miles McClellan Construction Co.

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

-

Analysis #I:

Third-Party Photo Documentation

Project Background

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

100

Analysis I: 3rd Party Photo Documentation | Analysis 2: Cast-in-Place Concrete Floors | Analysis 3: PEX Domestic Water System

-

<1-37 1 mg

Background:

ABOUT

CELEBRATING OUR IO[™] YEAR!

From Calgary to Charlotte, Scotland to San Diego - and 39 offices in between - Multivista is celebrating 10 years of better built, better managed projects. With over one billion square feet contracted, we are here because of you.

THANK YOU!

Some of the great projects we've done together! »»»

PHOTO VIDEO WEBCAM

THE ADVANTAGE ABOUT

Multivista - Visionary Technology For Better Built Projects

Multivista delivers "visual as-built" records of construction from beginning to end using exclusive Construction Photography, Construction Web Cameras & Video Documentation

Learn more about what we do and our Construction Progress Photography

TESTIMONIALS

Introdu	uction
---------	--------

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-0-22-

1001-001

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

1001-001

September 12, 2013

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-0-22-

10011001

October 16, 2013

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-01-02-

10011001

November 20, 2013

Background:

December 18, 2013

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-0-12-

Background:

Project Background

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-0-12-

Background:

Project Background

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

-0-12-

Background:

Project Background

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

Project Background

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Conclusion

Project Background

Convert 🔻 🛃 Select

Print

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Background:

- Multivista Systems, LLC providing service
- Milestone photography
- Progression photography
- Web-based software

Conclusion

Project Background

100

0011-001

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed

Project Background

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed

Project Background

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed

Cost without Photo Documentation											
Activity	Time	Labor	Material	Total							
Supervision	1	\$84	\$0	\$84							
Destructive Testing	2	\$76	\$0	\$76							
Repair	6	\$376	\$27	\$ <mark>403</mark>							
Total	9	\$536	\$27	<mark>\$563</mark>							
Total cost for 400 bat	hrooms			\$225,200							

Project Background

-0130-1

001100

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed

Project Background

11-12-

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed

Project Background

Case Study:

- Newly Constructed Ohio-based Children's Hospital
- ADA handrails in patient bathrooms detached from wall
- Destructive testing found proper support was absent
- 400 bathrooms needed tested
- Referenced MEP Exact-Built® photos
- Only 42 bathrooms needed fixed
- Saved almost \$210,000 and 3400 hours

C
Activity
Supervision
Demolition
Repair
Total
Total Cost for

100

001-001

ost with Photo	Docume	entation		Cost without Photo Documentation							
Time	Labor	Material	Total	Activity	Time	Labor	Material	Total			
0.5	\$42	\$0	\$42	Supervision	1	\$84	\$0	\$84			
1	\$19	\$0	\$19	Destructive Testing	2	\$76	\$0	<mark>\$76</mark>			
4.5	\$282	\$22	\$304	Repair	6	\$376	\$27	<mark>\$403</mark>			
6	\$343	\$22	\$365	Total	9	\$536	\$27	\$ <mark>563</mark>			
42 Bathrooms			\$15,330	Total cost for 400 bathrooms\$225,20							
	HI.	\$22 <u>-\$1</u> \$20	5,200 5,330 9,900	3600 hrs -252 hrs 3348 hrs							

Project Background

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Advantages:

- Relieves site superintendent of responsibility
- Photos are immediately available and organized
- Simple to use
- Potential increase in productivity
- Reduces litigation
- "Green" alternative to printed drawings and photos

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Analysis #2:

Use of Steel Deck and

Cast-in-Place Concrete

Project Background

100

001-001

- 8" precast hollow core concrete planks
- Steel W-shape beams anchored to existing masonry walls
- 3" concrete top coating
- Welded wire mesh reinforcement

Original Design:

- Limited access to area

2011200

Problem Identification:

• Precast concrete planks require accurate dimensions • Measurements for "Connector" section proved difficult • Potential need to move anchor points for steel beams

• Changes require re-order of planks

• Limited flexibility for other trades

- Composite steel deck
- Cast-in-place concrete
 - $3\frac{1}{2}$ " total thickness
 - 2" thickness above steel deck
- Welded wire mesh reinforcement
- Steel W-shape girders anchored to masonry walls
- Steel W-shape joists

Alternate Design:

Project Background

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

-

	Flooring System Estimates												
		0.	TT	0	Daily	Bare	Bare	Bare	Bare	Tota1	Total		
	Description	Qty	Unit	Crew	Output	Material	Labor	Equip.	Total	Days	Cost		
in-Placee	W8X10	17.1	L.F.	E2	600	\$14.60	\$4.68	\$2.55	\$21.83	0.029	\$373		
	W8X13	27.5	L.F.	E2	600	\$18.98	\$4.68	\$2.55	\$26.21	0.046	\$721		
	W8X18	91.1	L.F.	E2	600	\$26.28	\$4.68	\$2.55	\$33.51	0.152	\$3,053		
	W8X21	19	L.F.	E2	600	\$30.50	\$4.68	\$2.55	\$37.73	0.032	\$717		
	W8X24	72	L.F.	E2	550	\$35.00	\$5.10	\$2.78	\$42.88	0.131	\$3,087		
	W8X31	57	L.F.	E2	550	\$45.00	\$5.10	\$2.78	\$52.88	0.104	\$3,014		
÷	W8X35	49.5	L.F.	E2	550	\$51.00	\$5.10	\$2.78	\$58.88	0.090	\$2,915		
(a)	W10X45	50	L.F.	E2	550	\$65.70	\$5.10	\$2.78	\$73.58	0.091	\$3,679		
\sim	W12X50	26	L.F.	E2	750	\$73.00	\$3.75	\$2.04	\$78.79	0.035	\$2,049		
eck /	W12X58	18.5	L.F.	E2	750	\$84.50	\$3.75	\$2.04	\$90.29	0.025	\$1,670		
	W12X65	26.5	L.F.	E2	640	\$94.90	\$4.39	\$2.39	\$101.68	0.041	\$2,695		
Ω	W12X79	45.2	L.F.	E2	640	\$115.34	\$4.39	\$2.39	\$122.12	0.071	\$5,520		
iel	Vulcraft 1.5VL22	1932	S.F.	E4	3860	\$1.86	\$0.43	\$0.04	\$2.33	0.501	\$4,502		
Ste	6X6 W1.4XW1.4 Wire Mesh	19.32	C.S.F	2 Rođm	35	\$14.50	\$23.00	\$0.00	\$37.50	0.552	\$725		
	3.5" Concrete	1932	S.F.	C8	2613	\$1.39	\$0.87	\$0.27	\$2.53	0.739	\$4,889		
				Steel	l Deck / C	Cast-in-Pla	ce Floor	ing Syst	em Total	2.637	\$39,608		
	W10X33	46.2	L.F.	E2	550	\$48.00	\$5.10	\$2.78	\$55.88	0.084	\$2,582		
	W10X49	18.5	L.F.	E2	550	\$71.50	\$5.10	\$2.78	\$79.38	0.034	\$1,469		
يد ا	W16X50	26.5	L.F.	E2	800	\$73.00	\$3.51	\$1.91	\$78.42	0.033	\$2,078		
,as	W16X67	25	L.F.	E2	760	\$97.50	\$3.70	\$2.01	\$103.21	0.033	\$2,580		
Le l	8" Precast Hollow Core Plank	1932	S.F	C11	3200	\$7.10	\$1.13	\$0.57	\$8.80	0.604	\$17,004		
Ъ	6X6 W1.4XW1.4 Wire Mesh	19.32	C.S.F	2 Rodm	35	\$14.50	\$23.00	\$0.00	\$37.50	0.552	\$725		
	3" Topcoat Concrete	1932	S.F.	C8	2613	\$1.39	\$0.87	\$0.27	\$2.53	0.739	\$4,889		
						Preca	st Floor	ing Syst	em Total	2.079	\$31,326		

System Comparison:

Labor: I additional day Cost: additional \$16,564

-0-12-

001200

Project Background

00120

	Flooring System Estimates												
		0.	TT	0	Daily	Bare	Bare	Bare	Bare	Tota1	Total		
	Description	Qty	Unit	Crew	Output	Material	Labor	Equip.	Total	Days	Cost		
in-Placee	W8X10	17.1	L.F.	E2	600	\$14.60	\$4.68	\$2.55	\$21.83	0.029	\$373		
	W8X13	27.5	L.F.	E2	600	\$18.98	\$4.68	\$2.55	\$26.21	0.046	\$721		
	W8X18	91.1	L.F.	E2	600	\$26.28	\$4.68	\$2.55	\$33.51	0.152	\$3,053		
	W8X21	19	L.F.	E2	600	\$30.50	\$4.68	\$2.55	\$37.73	0.032	\$717		
	W8X24	72	L.F.	E2	550	\$35.00	\$5.10	\$2.78	\$42.88	0.131	\$3,087		
	W8X31	57	L.F.	E2	550	\$45.00	\$5.10	\$2.78	\$52.88	0.104	\$3,014		
÷	W8X35	49.5	L.F.	E2	550	\$51.00	\$5.10	\$2.78	\$58.88	0.090	\$2,915		
(a)	W10X45	50	L.F.	E2	550	\$65.70	\$5.10	\$2.78	\$73.58	0.091	\$3,679		
\sim	W12X50	26	L.F.	E2	750	\$73.00	\$3.75	\$2.04	\$78.79	0.035	\$2,049		
eck /	W12X58	18.5	L.F.	E2	750	\$84.50	\$3.75	\$2.04	\$90.29	0.025	\$1,670		
	W12X65	26.5	L.F.	E2	640	\$94.90	\$4.39	\$2.39	\$101.68	0.041	\$2,695		
Ω	W12X79	45.2	L.F.	E2	640	\$115.34	\$4.39	\$2.39	\$122.12	0.071	\$5,520		
iel	Vulcraft 1.5VL22	1932	S.F.	E4	3860	\$1.86	\$0.43	\$0.04	\$2.33	0.501	\$4,502		
Ste	6X6 W1.4XW1.4 Wire Mesh	19.32	C.S.F	2 Rođm	35	\$14.50	\$23.00	\$0.00	\$37.50	0.552	\$725		
	3.5" Concrete	1932	S.F.	C8	2613	\$1.39	\$0.87	\$0.27	\$2.53	0.739	\$4,889		
				Steel	l Deck / C	Cast-in-Pla	ce Floor	ing Syst	em Total	2.637	\$39,608		
	W10X33	46.2	L.F.	E2	550	\$48.00	\$5.10	\$2.78	\$55.88	0.084	\$2,582		
	W10X49	18.5	L.F.	E2	550	\$71.50	\$5.10	\$2.78	\$79.38	0.034	\$1,469		
يد ا	W16X50	26.5	L.F.	E2	800	\$73.00	\$3.51	\$1.91	\$78.42	0.033	\$2,078		
,as	W16X67	25	L.F.	E2	760	\$97.50	\$3.70	\$2.01	\$103.21	0.033	\$2,580		
Le l	8" Precast Hollow Core Plank	1932	S.F	C11	3200	\$7.10	\$1.13	\$0.57	\$8.80	0.604	\$17,004		
Ъ	6X6 W1.4XW1.4 Wire Mesh	19.32	C.S.F	2 Rodm	35	\$14.50	\$23.00	\$0.00	\$37.50	0.552	\$725		
	3" Topcoat Concrete	1932	S.F.	C8	2613	\$1.39	\$0.87	\$0.27	\$2.53	0.739	\$4,889		
						Preca	st Floor	ing Syst	em Total	2.079	\$31,326		

System Comparison:

Labor: I additional day **Cost:** additional \$16,564

- No accessibility issues • Onsite adjustability • Inaccurate measurements • Compromised anchor points • Last minute changes
- Can conform to MEP requirements
- No lead time

ntro	duct	tion

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Design of Steel Deck/Cast-in-Place Flooring System

-0-12-

2021200

Structural Breadth:

Project Background

1000

1001-001

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia
- Choose the beams

-05-32-

001-001

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia
- Choose the beams

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-(ICBO Approved (N0. 3415)

STEEL SECTION PROPERTIES

	Design	Deck		Section				
Deck Type	Thickness in	Weight psf	اہ in ⁴ /ft	S _p in ³ /ft	In in ⁴ /ft	S _n in ³ /ft	V _a Ibs/ft	F _v ksi
1.5VL22	0.0295	1.78	0.143	0.169	0.177	0.179	2754	50
1.5VL20	0.0358	2.14	0.186	0.224	0.222	0.231	3322	50
1.5VL19	0.0418	2.49	0.230	0.271	0.260	0.282	3857	50
1.5VL18	0.0474	2.82	0.272	0.311	0.295	0.324	4350	50
1.5VL16	0.0598	3.54	0.373	0.404	0.373	0.411	4336	40

(N=9.35) NORMAL WEIGHT CONCRETE (145 PCF)

TOTAL	DECK	SD	Max. Unsh	ored						Sup	erimpos	sed Live	Load,	PSF					
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0
	1.5VL22	5'-10	7'-10	7'-10	314	279	230	206	186	169	154	141	130	120	111	100	87	76	67
3.50	1.5VL20	7'-0	9'-4	9'-6	345	306	275	249	227	187	171	157	144	133	124	108	94	82	73
(t=2.00)	1.5VL19	7'-11	10'-3	10'-8	372	330	296	268	244	224	186	171	157	145	134	116	101	88	78
33 PSF	1.5VL18	8'-8	11'-0	11'-2	395	351	315	285	260	238	220	204	168	156	142	123	107	94	82
	1.5VL16	8'-10	11'-0	11'-4	397	353	316	286	261	239	221	205	169	156	145	135	119	105	92
	1.5VL22	5'-6	7'-5	7'-5	366	325	267	239	216	196	179	164	151	139	129	119	111	103	96
4.00	1.5VL20	6'-7	8'-10	8'-11	400	356	319	289	239	217	198	182	167	155	143	133	124	115	108
(t=2.50)	1.5VL19	7'-5	9'-9	10'-1	400	383	344	311	283	235	215	197	182	168	156	145	135	126	115
39 PSF	1.5VL18	8'-1	10'-5	10'-7	400	400	365	330	301	276	254	211	194	180	167	156	145	136	122
	1.5VL16	8'-3	10'-5	10'-9	400	400	365	330	301	276	255	211	194	180	167	155	145	136	127
	1.5VL22	5'-3	7'-1	7'-1	400	345	307	275	248	225	205	188	173	159	147	136	127	118	109
4.50	1.5VL20	6'-3	8'-5	8'-6	400	400	366	303	274	249	227	208	192	177	164	152	142	132	123
(t=3.00)	1.5VL19	7'-1	9'-3	9'-7	400	400	393	356	325	269	246	226	208	192	179	166	155	144	135
45 PSF	1.5VL18	7'-8	9'-11	10'-1	400	400	400	378	344	316	262	241	222	206	191	178	166	155	145
DOMESTIC:	1.5VL16	7'-10	9'-11	10'-3	400	400	400	377	344	315	262	240	222	205	190	177	165	155	145
	1.5VL22	5'-0	6'-9	6'-9	400	391	347	311	280	254	232	213	195	180	167	154	143	133	124
5.00	1.5VL20	6'-0	8'-1	8'-2	400	400	400	343	310	281	257	236	217	200	186	172	160	149	139
(t=3.50)	1.5VL19	6'-9	8'-11	9'-2	400	400	400	400	335	304	278	255	235	218	202	188	175	163	153
51 PSF	1.5VL18	7'-3	9'-6	9'-8	400	400	400	400	389	324	297	272	251	233	216	201	187	175	164
	1.5VL16	7'-5	9'-6	9'-10	400	400	400	400	388	323	295	271	250	232	215	200	187	175	164
	1.5VL22	4'-10	6'-6	6'-6	400	400	388	348	314	285	260	238	219	202	186	173	160	149	138
5.50	1.5VL20	5'-9	7'-9	7'-10	400	400	400	383	346	314	287	263	243	224	208	193	179	167	156
(t=4.00)	1.5VL19	6'-5	8'-6	8'-9	400	400	400	400	374	340	311	286	263	243	226	210	196	183	171
57 PSF	1.5VL18	7'-0	9'-1	9'-4	400	400	400	400	400	363	331	305	281	260	241	225	210	196	183
	1.5VL16	7'-1	9'-2	9'-5	400	400	400	400	400	361	330	303	279	259	240	224	209	195	183
	1.5VL22	4'-8	6'-4	6'-4	400	400	400	385	347	315	288	263	242	223	206	191	178	165	153
6.00	1.5VL20	5'-6	7'-5	7'-6	400	400	400	400	383	348	318	292	269	248	230	213	199	185	173
(t=4.50)	1.5VL19	6'-2	8'-2	8'-5	400	400	400	400	400	377	344	316	291	270	250	232	217	202	189
63 PSF	1.5VL18	6'-8	8'-9	9'-0	400	400	400	400	400	400	367	337	311	288	267	249	232	217	203
	1.51/1.16	6'-10	8'-10	9'-1	400	400	400	400	400	399	365	335	309	286	266	248	231	216	202

mum exterior bearing length required is 1.50 inches. Minimum interior bearing length required is 3.00 inc

minimum lengths are not provided, web crippling must be checked

ways contact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynam

term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluate

All fire rated assemblies are subject to an upper live load limit of 250 ps

20-100

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia
- Choose the beams

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-(ICBO Approved (N0. 3415)

STEEL SECTION PROPERTIES

	Design	Deck		Section				
Deck Type	Thickness in	Weight psf	اہ in ⁴ /ft	S _p in ³ /ft	In in ⁴ /ft	S _n in ³ /ft	V _a Ibs/ft	F _v ksi
1.5VL22	0.0295	1.78	0.143	0.169	0.177	0.179	2754	50
1.5VL20	0.0358	2.14	0.186	0.224	0.222	0.231	3322	50
1.5VL19	0.0418	2.49	0.230	0.271	0.260	0.282	3857	50
1.5VL18	0.0474	2.82	0.272	0.311	0.295	0.324	4350	50
1.5VI.16	0.0598	3.54	0.373	0.404	0.373	0.411	4336	40

(N=9.35) NORMAL WEIGHT CONCRETE (145 PCF)

TOTAL		SD	I Max. Unsh	ored	Superimposed Live Load, PSF														
SLAB	DECK		Clear Span							-	Clear	Span	ftin.)						
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0
	1.5VL22	5'-10	7'-10	7'-10	314	279	230	206	186	169	154	141	130	120	111	100	87	76	67
3.50	1.5VL20	7'-0	9'-4	9'-6	345	306	275	249	227	187	171	157	144	133	124	108	94	82	73
(t=2.00)	1.5VL19	7'-11	10'-3	10'-8	372	330	296	268	244	224	186	171	157	145	134	116	101	88	78
33 PSF	1.5VL18	8'-8	11'-0	11'-2	395	351	315	285	260	238	220	204	168	156	142	123	107	94	82
	1.5VL16	8'-10	11'-0	11'-4	397	353	316	286	261	239	221	205	169	156	145	135	119	105	92
	1.5VL22	5'-6	7'-5	7'-5	366	325	267	239	216	196	179	164	151	139	129	119	111	103	96
4.00	1.5VL20	6'-7	8'-10	8'-11	400	356	319	289	239	217	198	182	167	155	143	133	124	115	108
(t=2.50)	1.5VL19	7'-5	9'-9	10'-1	400	383	344	311	283	235	215	197	182	168	156	145	135	126	115
39 PSF	1.5VL18	8'-1	10'-5	10'-7	400	400	365	330	301	276	254	211	194	180	167	156	145	136	122
	1.5VL16	8'-3	10'-5	10'-9	400	400	365	330	301	276	255	211	194	180	167	155	145	136	127
	1.5VL22	5'-3	7'-1	7'-1	400	345	307	275	248	225	205	188	173	159	147	136	127	118	109
4.50	1.5VL20	6'-3	8'-5	8'-6	400	400	366	303	274	249	227	208	192	177	164	152	142	132	123
(t=3.00)	1.5VL19	7'-1	9'-3	9'-7	400	400	393	356	325	269	246	226	208	192	179	166	155	144	135
45 PSF	1.5VL18	7'-8	9'-11	10'-1	400	400	400	378	344	316	262	241	222	206	191	178	166	155	145
200105234823	1.5VL16	7'-10	9'-11	10'-3	400	400	400	377	344	315	262	240	222	205	190	177	165	155	145
	1.5VL22	5'-0	6'-9	6'-9	400	391	347	311	280	254	232	213	195	180	167	154	143	133	124
5.00	1.5VL20	6'-0	8'-1	8'-2	400	400	400	343	310	281	257	236	217	200	186	172	160	149	139
(t=3.50)	1.5VL19	6'-9	8'-11	9'-2	400	400	400	400	335	304	278	255	235	218	202	188	175	163	153
51 PSF	1.5VL18	7'-3	9'-6	9'-8	400	400	400	400	389	324	297	272	251	233	216	201	187	175	164
10000000000	1.5VL16	7'-5	9'-6	9'-10	400	400	400	400	388	323	295	271	250	232	215	200	187	175	164
	1.5VL22	4'-10	6'-6	6'-6	400	400	388	348	314	285	260	238	219	202	186	173	160	149	138
5.50	1.5VL20	5'-9	7'-9	7'-10	400	400	400	383	346	314	287	263	243	224	208	193	179	167	156
(t=4.00)	1.5VL19	6'-5	8'-6	8'-9	400	400	400	400	374	340	311	286	263	243	226	210	196	183	171
57 PSF	1.5VL18	7'-0	9'-1	9'-4	400	400	400	400	400	363	331	305	281	260	241	225	210	196	183
	1.5VL16	7'-1	9'-2	9'-5	400	400	400	400	400	361	330	303	279	259	240	224	209	195	183
	1.5VL22	4'-8	6'-4	6'-4	400	400	400	385	347	315	288	263	242	223	206	191	178	165	153
6.00	1.5VL20	5'-6	7'-5	7'-6	400	400	400	400	383	348	318	292	269	248	230	213	199	185	173
(t=4.50)	1.5VL19	6'-2	8'-2	8'-5	400	400	400	400	400	377	344	316	291	270	250	232	217	202	189
63 PSF	1.5VL18	6'-8	8'-9	9'-0	400	400	400	400	400	400	367	337	311	288	267	249	232	217	203
				- 0															

tact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynan

 $Concrete = 33 \frac{lb}{ft^2} \quad Steel Deck = 1.78 \frac{lb}{ft^2} \quad Misc. = 10 \frac{lb}{ft^2}$ Dead Load_{Joist} = Concrete + Deck + Misc = $33 + 1.78 + 10 = 44.8 \approx 45 \frac{lb}{ft^2}$ $Dead \ Load_{Girder} = Concrete + Deck + Misc. + Joist \approx 45^{lb}/ft^2 + Joist$ Live Load = $100 \frac{lb}{ft^2}$ $W_{dead} = Dead \ Load_{Joist} \times Tributary \ Width = 45 \times 3.25 = 146.25 \ lb/ft$

 $W_{live} = Live Load \times Tributary Width = 100 \times 3.25 = 325 \frac{lb}{ft}$

22 1 2

Project Background

=-----

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia

Choose the beams

-

$$V_{dead} = \frac{W_{dead}L_{beam}}{2(1000 \ lb/k)} = \frac{(146.25)(17)}{2(1000 \ lb/k)} = 1.24 \ kips$$
$$V_{live} = \frac{W_{live}L_{beam}}{2(1000 \ lb/k)} = \frac{(325)(17)}{2(1000 \ lb/k)} = 2.76 \ kips$$

 $V_u = 1.2V_{dead} + 1.6V_{live} = 1.2(1.24) + 1.6(2.76) = 5.91k \cdot ft$

$$\begin{split} & H_{dead} = \frac{W_{dead}L_{beam}^2}{8(1000\ lb/k)} = \frac{(146.25\ lb/ft)(17ft)^2}{8(1000\ lb/k)} = 5.28\ k \cdot ft \\ & M_{live} = \frac{W_{dead}L_{beam}^2}{8(1000\ lb/k)} = \frac{(325\ lb/ft)(17ft)^2}{8(1000\ lb/k)} = 11.74\ k \cdot ft \end{split}$$

 $M_u = 1.2M_{dead} + 1.6M_{live} = 1.2(5.28) + 1.6(11.74) = 25.12k \cdot ft$

$$\Delta_{allow} = \frac{L_{beam}(12^{in}/ft)}{360} = \frac{17(12)}{360} = 0.57in.$$

$$\frac{5W_{live}L_{beam}^{4}(12^{in}/ft)^{4}}{384(29,000,000)(\Delta_{allow})(12^{in}/ft)} = \frac{5(325)(17)^{4}(12)^{4}}{384(29,000,000)(0.57)(12)} = 37.17i$$

 $Concrete = 33^{lb}/ft^2 \quad Steel \, Deck = 1.78^{lb}/ft^2 \quad Misc. = 10^{lb}/ft^2$ $Dead \ Load_{Girder} = Concrete + Deck + Misc. + Joist \approx 45 \frac{lb}{ft^2} + Joist$ Live Load = $100 \frac{lb}{ft^2}$ $W_{dead} = Dead \ Load_{Joist} \times Tributary \ Width = 45 \times 3.25 = 146.25 \ lb/ft$

Dead Load_{Joist} = Concrete + Deck + Misc = $33 + 1.78 + 10 = 44.8 \approx 45 \frac{lb}{ft^2}$

 $W_{live} = Live Load \times Tributary Width = 100 \times 3.25 = 325 \frac{lb}{ft}$

22 1 2

Project Background

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia
- Choose the beams

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

$V_{dead} = \frac{W_{dead}L_{beam}}{2(1000 \ lb/k)} = \frac{(146.25)(17)}{2(1000 \ lb/k)} = 1.24 \ kips$
$V_{live} = \frac{W_{live}L_{beam}}{2(1000 lb/k)} = \frac{(325)(17)}{2(1000 lb/k)} = 2.76 kips$
$= 1.2V_{dead} + 1.6V_{live} = 1.2(1.24) + 1.6(2.76) = 5.91k \cdot ft$
$I_{dead} = \frac{W_{dead}L_{beam}^2}{8(1000 \ lb/k)} = \frac{(146.25 \ lb/ft)(17ft)^2}{8(1000 \ lb/k)} = 5.28 \ k \cdot ft$
(a - 1)b

$$M_{live} = \frac{W_{dead}L_{beam}^2}{8(1000 \ lb/k)} = \frac{(325 \ lb/ft)(17ft)^2}{8(1000 \ lb/k)} = 11.74 \ k \cdot ft$$

 $M_u = 1.2M_{dead} + 1.6M_{live} = 1.2(5.28) + 1.6(11.74) = 25.12k \cdot ft$

$$A_{allow} = \frac{L_{beam}(12 \ in/ft)}{360} = \frac{17(12)}{360} = 0.57 in.$$

 $5W_{live}L_{beam}^4 (12 \frac{in}{ft})^4$ $5(325)(17)^4(12)^4$

	Steel Beam Calculation Spreadsheet																	
	Б	Tributary	Beam	Dead Lo	oad (psf)	Live	Wd	Wl	МD	Ml	\mathbf{M}_{U}	VD	VL	Vu	Δ_{allow}	I	Beam	Beam
	Beam	Width (ft)	Length (ft)	Deck	Joists	Load (psf)	(1b/ft)	(lb/ft)	(k∙ft)	(k·ft)	(k·ft)	(kips)	(kips)	(kips)	(in.)	(in.4)	Shape	Wt. (lb.)
	AB 1	3.25	17.0	45.0		100.0	146.25	325.00	5.28	11.74	25.12	1.24	2.76	5.91	0.57	37.17	w8x 18	306.00
	AB 2	6.50	17.0	45.0		100.0	292.50	650.00	10.57	23.48	50.25	2.49	5.53	11.82	0.57	74.33	w8x 24	408.00
	AB 3	6.50	17.0	45.0		100.0	292.50	650.00	10.57	23.48	50.25	2.49	5.53	11.82	0.57	74.33	w8x 24	408.00
	AB 4	6.48	17.0	45.0		100.0	291.56	647.92	10.53	23.41	50.09	2.48	5.51	11.79	0.57	74.09	w8x 24	408.00
	AB 5	3.23	17.0	45.0		100.0	145.31	322.92	5.25	11.67	24.96	1.24	2.74	5.87	0.57	36.93	w8x 18	306.00
	BC 1	3.25	12.5	45.0		100.0	146.25	325.00	2.86	6.35	13.58	0.91	2.03	4.35	0.42	14.77	w8x 13	162.50
	BC 2	6.50	12.5	45.0		100.0	292.50	650.00	5.71	12.70	27.17	1.83	4.06	8.69	0.42	29.55	w8x 18	225.00
	BC 3	6.50	15.0	45.0		100.0	292.50	650.00	8.23	18.28	39.12	2.19	4.88	10.43	0.50	51.06	w8x 18	270.00
	BC 4	6.00	15.0	45.0		100.0	270.00	600.00	7.59	16.88	36.11	2.03	4.50	9.63	0.50	47.13	w8x 18	270.00
s s	BC 5	2.75	15.0	45.0		100.0	123.75	275.00	3.48	7.73	16.55	0.93	2.06	4.41	0.50	21.60	w8x 13	195.00
018	CD 1	3.75	24.0	45.0		100.0	168.75	375.00	12.15	27.00	57 . 78	2.03	4.50	9.63	0.80	120.66	w8x 35	840.00
<u>ر</u>	CD 2	6.50	24.5	45.0		100.0	292.50	650.00	21.95	48.77	104.37	3.58	7.96	17.04	0.82	222.49	w10x 45	1102.50
	CD 3.1	6.50	7.5	45.0		100.0	292.50	650.00	2.06	4.57	9.78	1.10	2.44	5.22	0.25	6.38	w8x 10	75.00
	CD 3.2	6.50	9.6	45.0		100.0	292.50	650.00	3.37	7.49	16.02	1.40	3.12	6.68	0.32	13.39	w8x 10	96.00
	CD 4	6.00	25.5	45.0		100.0	270.00	600.00	21.95	48.77	104.37	3.44	7.65	16.37	0.85	231.57	w10x 45	1147.50
	CD 5	3.25	25.5	45.0		100.0	146.25	325.00	11.89	26.42	56.53	1.86	4.14	8.87	0.85	125.43	w8x 35	892.50
	DE 1	3.75	14.6	45.0		100.0	168.75	375.00	4.50	9.99	21.38	1.23	2.74	5.86	0.49	27.16	w8x 18	262.80
	DE 2	6.50	19.0	45.0		100.0	292.50	650.00	13.20	29.33	62.77	2.78	6.18	13.21	0.63	103.77	w8x 31	589.00
	DE 3	6.50	19.0	45.0		100.0	292.50	650.00	13.20	29.33	62.77	2.78	6.18	13.21	0.63	103.77	w8x 31	589.00
	DE 4	6.00	19.0	45.0		100.0	270.00	600.00	12.18	27.08	57.94	2.57	5.70	12.20	0.63	95.79	w8x 31	589.00
	DE 5	3.25	19.0	45.0		100.0	146.25	325.00	6.60	14.67	31.38	1.39	3.09	6.61	0.63	51.89	w8x 21	399.00
1	A 18	8.50	26.0	45.0	4.2	100.0	417.78	850.00	35.19	71.59	156.78	5.42	11.03	24.16	0.87	346.06	w12x 50	1297.92
SUC	B 17	16.00	25.0	45.0	7.3	100.0	836.96	1600.00	65.39	125.00	278.47	10.46	20.00	44.55	0.83	581.90	w12x 79	1975.00
ird	C 47	20.25	18.5	45.0	7.1	100.0	1055.63	2025.00	44.96	86.24	191.94	9.74	18.69	41.59	0.62	296.42	w12x 58	1070.58
0	D 37	22.25	20.2	45.0	12.1	100.0	1270.48	2225.00	64.85	113.58	259.55	12.84	22.48	51.38	0.67	427.39	w12x 79	1596.46
1	E 18	10.88	26.5	45.0	5.8	100.0	552.67	1087.50	48.51	95.46	210.96	7.32	14.41	31.84	0.88	471.06	w12x 65	1722.50

denotes beams whose size is controlled by I

-05-20-1

001-001

Design Procedure:

- Identify the joist spacing
- Choose the steel deck and concrete thickness
- Calculate the dead and live loads
- Calculate the shear, moment and moment of inertia
- Choose the beams

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Analysis #3:

Use of PEX Tubing for Domestic Plumbing System

Project Background

Original Design:

- Copper pipe sizes 3" to $\frac{1}{2}$ "
- Soldered joints
- Cold, hot and hot water return lines
- Trunk and branch layout

- Copper is expensive
- Soldering joints is labor intensive
- High risk of theft

-00-00-1

0011-001

Problem Identification:

Alternate Design: • Cross-linked polyethylene tubing (PEX) – 2" to $\frac{1}{2}$ " (larger pipes to remain copper)

- Clamped joints
- No 90° elbows in $\frac{1}{2}$, $\frac{3}{4}$ or I'' pipe
- Cold, hot and hot water return lines
- Trunk and branch layout

Project Background

-0-12-

001-001

Advantages:

- Less Expensive (50%)
- Faster Install (67%)
- No Open Flames

- Fewer Fittings
- No "dry fit" joints
- Corrosion resistant

Disadvantages:

- Special equipment
- Learning curve
- Unknown longevity

- Not bacteriostatic
- Not UV resistant
- Not fireproof

Cotorom		PEX	Copper				
Category	Materials	Labor	Mat.+Labor	Materials	Labor		
Pipe	\$7,305.51	\$6,818.93	\$14,124.44	\$10,172.20	\$9,352.6		
90°	\$1,290.80	\$417.50	\$1,708.30	\$975.71	\$12,157.6		
Тее	\$1,032.10	\$654.55	\$15,832.74	\$664.18	\$2,890.5		
Insulation	\$7,3	305.00	\$7,305.00	\$12,595.00			
Totals			\$38,970.48				

Total Costs

-

Conclusion

3 22

311

ntroc	Juction

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Plumbing Breadth:

Compare Friction Loss in PEX System to that in Copper

System

• Calculate flow

-00-11

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

10.0

100

<x->>/~~/

Procedure:

- Determine design velocity 4ft/s
- Calculate friction loss

Introo	luction
--------	---------

001

0012001

-

100 Day

<1-32/m

Procedure:

• Determine design velocity – 4ft/s

• Calculate flow

Calculate friction loss

velocity
$$(ft/s) \times area(ft^2) \times 7.48^{\frac{1}{2}}$$

$$4^{ft}/s \times 3.09in^2 \times \frac{1ft^2}{144in^2} \times 7.48^{gt}$$

315

Conclusion

 $\frac{gal}{ft^3} \times 60^{S} / min = flow(\frac{gal}{min})$

 $\frac{gal}{ft^3} \times 60^{S} / min = 38.53 \frac{gal}{min}$

3 22

- Determine design velocity 4ft/s
- Calculate flow
- Calculate friction loss

100

1001-001

-

61-27

Procedure:

$$4^{ft}/_{s} \times 3.09in^{2} \times \frac{1ft^{2}}{144in^{2}} \times 7.48^{gal}/_{ft^{3}} \times 60^{s}/_{min} = 38.53^{gal}/_{min}$$

$$P = \frac{4.52 \times 38.53^{1.85}}{130^{1.85} \times 1.985^{4.87}} = 0.0169 \frac{psi}{ft}$$

 $velocity(ft/s) \times area(ft^2) \times 7.48 \frac{gal}{ft^3} \times 60 \frac{s}{min} = flow(\frac{gal}{min})$

Project Background

- Determine design velocity 4ft/s
- Calculate flow

100

1001-001

- Calculate friction loss
- Calculate total equivalent length

Pipe Size (in)	Velocity (ft/s)	Flow (gal/min)	Friction Loss (psi/ft)	System Components	Equivalent Length of Component	Number of Components	Total Equivalent Length (ft)	Total Friction Loss (psi)
				Straight Pipe	89.00	1	89.00	
2				90° Elbow	5.50	5	27.50	
				Tee	0.50	1	0.50	
	4.00	38.53	0.0169				117.00	1.9769

-

Procedure:

velocity
$$(ft/s) \times area(ft^2) \times 7.48^{\frac{1}{2}}$$

$$4^{ft}/_{s} \times 3.09in^{2} \times \frac{1ft^{2}}{144in^{2}} \times 7.48^{gal}/_{ft^{3}} \times 60^{s}/_{min} = 38.53^{gal}/_{min}$$

$$P = \frac{4.52 \times 38.53^{1.85}}{130^{1.85} \times 1.985^{4.87}} = 0.0169 \frac{psi}{ft}$$

 $3^{gal}/ft^3 \times 60^{s}/min = flow(\frac{gal}{min})$

Friction Loss to Most Distant Fixture (Copper)

Pipe Size (in)	Velocity (ft/s)	Flow (gal/min)	Friction Loss (psi/ft)	System Components	Equivalent Length of Component	Number of Components	Total Equivalent Length (ft)	Total Friction Loss (psi)		
				Straight Pipe	89.00	1	89.00			
2				90° Elbow	5.50	5	27.50			
2				Тее	0.50	1	0.50			
	4.00	38.53	0.0169				117.00	1.9769		
				Straight Pipe	321.00	1	321.00			
1 1/2				90° Elbow	4.00	8	32.00			
1/2				Тее	0.50	7	3.50			
	4.00	22.19	0.0235				356.50	8.3599		
				Straight Pipe	80.00	1	80.00			
1 1/4				90° Elbow	3.00	2	6.00			
1 /4				Tee (Branch)	0.50	1	0.50			
	4.00	15.71	0.0288				86.50	2.4946		
				Straight Pipe	103.00	1	103.00			
1				90° Elbow	2.50	4	10.00			
1				Tee (Branch)	4.50	5	22.50			
	4.00	10.29	0.0367				135.50	4.9729		
				Straight Pipe	64.00	1	64.00			
3/4				90° Elbow	2.00		0.00			
/4				Тее	3.00	1	3.00			
	4.00	6.03	0.0502				67.00	3.3613		
				Straight Pipe	15.00	1	15.00			
1/				90° Elbow	1.00	8	8.00			
72				Tee	2.00	2	4.00			
	4.00	2.90	0.0767				27.00	2.0711		
Total F	Total Friction Loss to Most Distant Fixture									

- Determine design velocity 4ft/s
- Calculate flow

100

001200

- Calculate friction loss
- Calculate total equivalent length
- Calculate total friction loss

Analysis I: 3rd Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

Friction Loss to Most Distant Fixture (PEX)

Procedure:

24.45 psi	
<u>-23.24 psi</u>	
1.21 psi	

Pipe Size (in)	Velocity (ft/s)	Flow (gal/min)	Friction Loss (psi/ft)	System Components	Equivalent Length of Component	Number of Components	Total Equivalent Length (ft)	Total Friction Loss (psi)	
				Straight Pipe	89.00	1	89.00		
0				90° Elbow	11.29	5	56.45		
2				Tee (Branch)	1.56	1	1.56		
	4.00	25.99	0.0170				147.01	2.4992	
				Straight Pipe	321.00	1	321.00		
11/				90° Elbow	10.85	8	86.80		
1 7/2		V		Tee (Branch)	2.07	7	14.49		
	4.00	15.16	0.0237				422.29	10.0083	
				Straight Pipe	80.00	1	80.00		
114				90° Elbow	9.61	2	19.22		
1 74				Tee (Thru)	1.64	1	1.64		
2	4.00	10.88	0.0290				100.86	2.9249	
				Straight Pipe	103.00	1	103.00		
1				90° Elbow	3.40	0	0.00		
1				Tee (Thru)	2.00	5	10.00		
	4.00	7.28	0.0373				113.00	4.2149	
1.1				Straight Pipe	64.00	1	64.00		
3/4				90° Elbow	2.20	0	0.00		
/4				Tee (Thru)	0.80	1	0.80		
157	4.00	4.41	0.0510				64.80	3.3048	
				Straight Pipe	15.00	1	15.00		
1/				90° Elbow	3.00	0	0.00		
/2				Tee (Branch)	2.00	2	4.00		
	4.00	2.21	0.0787				19.00	1.4953	
Total Friction Loss to Most Distant Fixture									

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

-

100

<1-32/201

10.00

Project Background

1000

0011001

Analysis #I: 3rd-Party Photo Documentation • \$0.20 - \$0.60 / sqft

- Reliable
- Organized and accessible photos
- Reduces litigation
- Increases productivity
- "Green"

Project Background

Analysis I: ^{3rd} Party Photo Documentation Analysis 2: Cast-in-Place Concrete Floors Analysis 3: PEX Domestic Water System

- Analysis #I: 3rd-Party Photo Documentation • \$0.20 - \$0.60 / sqft
- Reliable
- Organized and accessible photos
- Reduces litigation
- Increases productivity
- "Green"

- No accessibility issues
- Flexibility during installation
- Easy coordination of penetrations
- No lead time

-0-22-

The second second

Analysis #2: Cast-in-Place Concrete Floors

Project Background

- Analysis #I: 3rd-Party Photo Documentation • \$0.20 - \$0.60 / sqft
- Reliable
- Organized and accessible photos
- Reduces litigation
- Increases productivity
- "Green"

- No accessibility issues
- Flexibility during installation
- Easy coordination of penetrations
- No lead time

-0-22-

Analysis #2: Cast-in-Place Concrete Floors

Analysis #3: PEX Domestic Water System

TIP

- 50% savings in material cost
- 67% savings in installation time
- Fewer fittings = fewer leaks
- No corrosion
- Low risk of theft

Project Background

-001200

Academic Acknowledgements:

Robert Leicht Kevin Parfitt Moses Ling Stephen Treado

Industry Acknowledgements:

Peggy Murphy - SERS Matt Allen - SERS Joe Studer - SERS Randy Johnson - Multivista Matt Rolfe - Multivista Gary Runyan - Zurn Dalton Deeter – Deeter Plumbing & Heating Shashi Savla – Kabil Associates Raymond Roy - Uponor Matthew Barrett – W.G. Tomko Gregory Costa - McKamish

Questions?

